Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg,* Mohammad Ghadermazi and Jafar Attar Gharamaleki

Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, PO Box 15614, Tehran, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.062$
$w R$ factor $=0.153$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Pyridine-2,6-dicarboxylic acid-pyridine-4-carboxamide-water (1/1/1)

The combination of pyridine-2,6-dicarboxylic acid $\left(\mathrm{pydcH}_{2}\right)$ and pyridine-4-carboxamide (pyca) in a $1: 1$ molar ratio, followed by recrystallization from water, leads to the formation of the molecular cocrystal pydcH $\mathrm{H}_{2} \cdot$ pyca $\cdot \mathrm{H}_{2} \mathrm{O}$. In the crystal structure, the water molecules bridge the organic components, forming infinite zigzag chains, which are further linked together to form a hydrogen-bonded three-dimensional network.

Comment

The creation of new functional materials through the control of intermolecular bonding is a key aim of crystal engineering (Desiraju, 1989; Schmidt, 1971). The synthesis of crystalline supramolecular structures mediated by hydrogen bonds is of considerable importance. Among all the non-bonded interactions, hydrogen bonding has proved to be the most useful and reliable, because of its strength and directional properties (Aakeroy \& Seddon, 1993).

In the case of cocrystals, these are generally formed by dissolution and recrystallization from a suitable solvent, although sublimation and growth from the melt are also used. Cocrystals are used to reveal specific recognition motifs, such as those proposed for rational drug design (Baures, 1999; Houk et al., 1999) and crystal engineering applications.

The asymmetric unit of the title cocrystal, (I), is shown in Fig. 1 and selected geometrical parameters are given in Table 1. The $\mathrm{C}-\mathrm{O}$ distances support the existence of the unionized acid molecules, indicating cocrystal formation. In (I), the O atoms of carboxylic groups make different types of hydrogen bonds (Table 2).

A remarkable feature in the crystal structure of (I) is the presence of a large number of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is widely accepted (Desiraju \& Steiner, 1999; Biradha et al., 1993), and weak hydrogen bonding can be exploited in supramolecular chemistry and crystal structure design (Derewenda et al., 1995; Bond, 2003). The CH groups in pyridine rings or heterocyclic compounds related to pyridine

Received 12 July 2006 Accepted 13 July 2006

Figure 1
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The packing of hydrogen-bonded chains in the crystal structure of (I), forming a layer parallel to (001). Hydrogen bonds are shown as dashed lines.
are often observed to act as donor groups in $\mathrm{C}-\mathrm{H} \cdots A$ interactions (Oswald et al., 2004; Li et al., 2005). In (I), the $\mathrm{H} 9 A \cdots \mathrm{O} 1$ distance $(2.34 \AA)$ as well as the $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1$ angle $\left(163^{\circ}\right)$ are within the distance and angle criteria for a general $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Desiraju, 1996; Srinivasan et al., 2006; Ramezanipour et al., 2004; Dalir Kheirollahi et al., 2005).

In the crystal structure of (I), water molecules bridge the organic components, forming infinite zigzag chains (Fig. 2), which are further linked together to form a hydrogen-bonded three-dimensional network. Consequently, (I) can be considered to be a supramolecuar structure formed by non-covalent interactions.

Experimental

An equimolar mixture of pyridine-2,6-dicarboxylic acid, $\left(\mathrm{pydcH}_{2}\right)$, $(1.67 \mathrm{~g}, 10 \mathrm{mmol})$ and pyridine-4-carboxamide $(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ in tetrahydrofuran (30 ml) was refluxed for 10 h . After filtration and removal of the solvent, a white powder was obtained. Colourless crystals of (I) were obtained by recrystallization of the powder from water over a period of four weeks.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$Z=4$
$M_{r}=307.26$
Monoclinic, $P 2_{1} / c$
$a=13.410$ (3) \AA
$b=5.0467(10) \AA$
$c=19.937$ (4) \AA
$\beta=100.85(3)^{\circ}$
$V=1325.2(5) \AA^{3}$
$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, colourless
$0.45 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rebuilt Syntex $P 2{ }_{1} /$ Siemens $P 3$
four-circle diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
5684 measured reflections
2895 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.045 P)^{2}\right. \\
\quad+2.9 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.010 \\
\Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.42 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.153$
$S=1.00$
2895 reflections
205 parameters
H-atom parameters constrained

2310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.0^{\circ}$
2 standard reflections every 98 reflections intensity decay: 2%

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 6$	$1.219(3)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.310(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.304(3)$	$\mathrm{O} 5-\mathrm{C} 13$	$1.242(3)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.218(3)$		
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$124.2(2)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 5$	$113.6(2)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$122.5(2)$	$\mathrm{O} 5-\mathrm{C} 13-\mathrm{N} 3$	$123.5(2)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1$	$113.3(2)$	$\mathrm{O} 5-\mathrm{C} 13-\mathrm{C} 8$	$118.6(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 4$	$124.3(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 8$	$117.9(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 5$	$122.0(2)$		
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7-\mathrm{O} 3$	$4.4(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$	$-179.7(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7-\mathrm{O} 4$	$-176.2(2)$	$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 13-\mathrm{O} 5$	$4.2(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	$0.9(4)$	$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 13-\mathrm{N} 3$	$-175.6(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4O $\cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.82	1.75	$2.559(3)$	167
O2-H2O $\cdots \mathrm{N} 2^{\mathrm{ii}}$	0.82	1.76	$2.574(3)$	175
O1W-H1WB \cdots O5	0.82	1.92	$2.733(3)$	170
N3-H3N $A \cdots$ O3	0.87	2.04	$2.905(3)$	177
O1W-H1WA \cdots O3	0.82	2.30	$2.920(3)$	132
N3-H3N $B \cdots \mathrm{O}$	0.87	2.07	$2.934(3)$	172
C9-H9A \cdots O1	0.95	2.34	$3.264(3)$	163

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y-1,-z+1$.
The H atoms of $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}$ and NH_{2} groups were located in difference syntheses, idealized and refined as riding, with $\mathrm{N}-\mathrm{H}=$ $0.87 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{O})$. The remaining H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ for aromatic H atoms, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C).

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: $P 3 / P C$; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

organic papers

Financial support by the Teacher Training University is gratefully acknowledged.

References

Aakeroy, C. B. \& Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.
Baures, P. W. (1999). Org. Lett. 1, 249-252.
Biradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. \& Desiraju, G. R. (1993). Chem. Commun. pp. 1473-1475. Bond, A. D. (2003). Chem. Commun. pp. 250-251.
Dalir Kheirollahi, P., Aghabozorg, H. \& Moghimi, A. (2005). Anal. Sci. 21, x153-x154.
Derewenda, Z. S., Lee, L. \& Derewenda, U. (1995). J. Mol. Biol. 252, 248262.

Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.

Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology. New York: Oxford University Press.
Houk, K. N., Menzer, S., Newton, S. P., Raymo, F. M., Stoddart, J. F. \& Williams, D. J. (1999). J. Am. Chem. Soc. 121, 1479-1487.
Li, Z., Ding, J., Robertson, G., Day, M. \& Tao, Y. (2005). Tetrahedron Lett. 46 6499-6502.
Oswald, I. D. H., Motherwell, W. D. S. \& Parsons, S. (2004). Acta Cryst. E60, o1967-o1969.
Ramezanipour, F., Aghabozorg, H., Sheshmani, S., Moghimi, A. \& StoeckliEvans, H. (2004). Acta Cryst. E60, m1803-m1805.
Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1989). P3/PC and XDISK (Release 4.1). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Srinivasan, L., Anandalwar, S. M., Prasad, J. S., Manvar, D., Parecha, A. \& Shah, A. (2006). Anal. Sci. 22, x97-x98.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

